Gold nanocages covered with thermally-responsive polymers for controlled release by high-intensity focused ultrasound.

نویسندگان

  • Weiyang Li
  • Xin Cai
  • Chulhong Kim
  • Guorong Sun
  • Yu Zhang
  • Rui Deng
  • Miaoxin Yang
  • Jingyi Chen
  • Samuel Achilefu
  • Lihong V Wang
  • Younan Xia
چکیده

This paper describes the use of Au nanocages covered with smart, thermally-responsive polymers for controlled release with high-intensity focused ultrasound (HIFU). HIFU is a highly precise medical procedure that uses focused ultrasound to heat and destroy pathogenic tissue rapidly and locally in a non-invasive or minimally invasive manner. The released dosage could be remotely controlled by manipulating the power of HIFU and/or the duration of exposure. We demonstrated localized release within the focal volume of HIFU by using gelatin phantom samples containing dye-loaded Au nanocages. By placing chicken breast tissues on top of the phantoms, we further demonstrated the feasibility of this system for controlled release at depths up to 30 mm. Because it can penetrate more deeply into soft tissues than near-infrared light, HIFU is a potentially more effective external stimulus for rapid, on-demand drug release.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new theranostic system based on gold nanocages and phase-change materials with unique features for photoacoustic imaging and controlled release.

This communication reports a new theranostic system with a combination of capabilities to both enhance the contrast of photoacoustic (PA) imaging and control the release of a chemical or biological effector by high-intensity focused ultrasound (HIFU). The fabrication of this system simply involves filling the hollow interiors of gold nanocages with a phase-change material (PCM) such as 1-tetrad...

متن کامل

High intensity focused ultrasound and redox dual responsive polymer micelles.

A novel class of HIFU and redox dual responsive polymer with a disulfide bond weak linkage is developed. The novel modality of HIFU and redox triggered release allows for the fine-tuning of the release kinetics of the encapsulants from the micelles in a remote and controlled way.

متن کامل

Gold nanocages covered by smart polymers for controlled release with near-infrared light

Photosensitive caged compounds have enhanced our ability to address the complexity of biological systems by generating effectors with remarkable spatial/temporal resolutions. The caging effect is typically removed by photolysis with ultraviolet light to liberate the bioactive species. Although this technique has been successfully applied to many biological problems, it suffers from a number of ...

متن کامل

Drug delivery and drug targeting: Drug targeting using thermally responsive polymers and local hyperthermia.

We report a new thermal targeting method in which a thermally responsive drug carrier selectively accumulates in a solid tumor that is maintained above physiological temperature by externally applied, focused hyperthermia. We synthesized two thermally responsive polymers that were designed to exhibit a lower critical solution temperature (LCST) transition slightly above physiological temperatur...

متن کامل

An overview of therapeutic applications of ultrasound based on synergetic effects with gold nanoparticles and laser excitation

Acoustic cavitation which occurs at high intensities of ultrasound waves can be fatal for tumor cells. The existence of dissolved gases and also the presence of nanoparticles (NPs) in a liquid, irradiated by ultrasound, decrease the acoustic cavitation onset threshold and the resulting bubbles collapse. On the other hand, due to unique capabilities and optical properties of gold nanoparticles (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 3 4  شماره 

صفحات  -

تاریخ انتشار 2011